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1. INTRODUCTION

Effort  has  been  made  to  represent  model 
uncertainties since 1990s. Toth and Kalnay (1995) 
deliberately  inflate  the  ensemble  perturbations 
during  the  integration  to  increase  the  ensemble 
spread.  Multi-model  and  multi-model  version 
approaches  are  employed  in  both  operational 
systems  (e.g.  Houtekamer  et  al.,  1996)  and 
experimental tests (e.g. Stensrud et al. 2000 and 
Hou et al.  2001). On the other hand, the use of 
stochastic noise to represent unpredictable small-
scale variability, in the form of stochastic physics 
with  the  ECMWF  ensemble  forecast  system 
(Buizza,  et  al,  1999)  and  the  stochastic 
backscatter  applied to  the  UK Met  Office  model 
(Frederiksen  and  Davies  1997),  appear  to  have 
beneficial  effect  on  forecast  skills  and  synoptic 
variability.  Based  on  these  considerations, 
research  is  being  conducted  at  EMC/NCEP  to 
develop  a  practical  and  effective  stochastic 
parameterization  scheme  within  NCEP’s  Global 
Ensemble  Forecasting  System  (GEFS).  The 
scheme is based on random combinations of the 
tendencies  of  the  ensemble  perturbations  and 
referred  as  a  Stochastic  Perturbation  Scheme 
(SPS). The experiments with a simplified version 
of SPS (Hou, Toth and Zhu 2006, HTZ hereafter) 
show encouraging results. Since 2006, GEFS has 
been  running  under  the  Earth  System Modeling 
System  (ESMF)  environment  and  this  makes  it 
possible to employ the scheme in the operations 
with a more realistic version. This paper presents 
the results of experiments with SPS at operational 
environment  and  discuss  the  impact  of  the 
scheme on the GEFS model output.

2. FORMULATION OF THE SCHEME 

      The  general  framework  with  stochastic 
presentation  of  model  related  uncertainties  is  to 
add a stochastic forcing term S to the conventional 
tendency T, for each member  i of  the ensemble 
system, i.e., 

* Corresponding author address: Dingchen Hou, Environmental 
Modeling Center/NCEP/NOAA,W/NP2 NOAA WWB #207, 5200 
Auth Road, Camp Springs MD 20746;  
email: dingchen.hou@noaa.gov.

    
The  stochastic  formulation  of  the  ECMWF 
ensemble  system  (Buizza  et  al.  1999)  links 
stochastic forcing S to regions in the atmosphere 
where  conventional  subgrid  parameterization  is 
active  (Palmer,  2001).  A  different  approach  is 
adopted  in  the  current  scheme  by  linking  the 
stochastic forcing term S to the total conventional 
forcing  T  (including  the  grid  scale  and  subgrid 
scale  parameterizations).  It  is  assumed  that  the 
conventional  tendencies  of  the  ensemble 
perturbations 

provide a sample of realizations of the stochastic 
forcing. Therefore, the S terms are formulated by 
various combinations of the P vectors, i.e.,

where i and j are the index denoting the ensemble 
members and the summation is taken over all N 
ensemble members j=1, N.
    With the simplified version of the scheme (HTZ), 
two approximations are made. Firstly, the scheme 
is  applied  every  6  hours  and  the  conventional 
tendency  Ti is  approximated  by  6h  finite 
differences.  Secondly,  the  combination  of  the  P 
vectors for a particular member i, is replaced by a 
single  Pj  vector  randomly  selected  from  the  P 
vectors  excluding  j=i.  While  keeping  the  first 
approximation,  the  scheme  is  improved  by 
randomly  combine  all  of  the  P  vectors.  This  is 
realized  by  a  procedure  similar  to  Ensemble 
Transform (ET) technique but applied to ensemble 
perturbation tendencies (instead of the ensemble 

     Fig.1 Examples of the temporal variation of the combination 
coefficients  wi,j.  N=14  is  assumed  and  shown  are  the  14 
curves for i=14 and j=1 to 14.
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perturbations)  successively  (not  only  at  the 
initialization of the integration).
      To illustrate the procedure, S and P, as well as 
w, are expressed as functions of time t and written 
in matrix form, i.e.
                      S (t) = P(t) W(t)                      (2)
                      MxN      MxN  NxN
Where M is the number of grid points and N the 
number of  ensemble members.  The elements of 
Matrix W are the random weights used to combine 
the  ensemble  tendency  perturbations  and  the 
Appendix  describes  the  algorithm  used  to 
generate these coefficients. Each wi,j varies like a 
random walk  imposed on a periodic function and 
some examples are shown in Fig. 1.
     Once  the  combination  coefficients  wi,j are 
specified,  the  stochastic  perturbation  scheme  is 
executed  by  periodically  (every  6  hours)  halting 
the integrations and modifying the model state Xt 

by
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                                                               (3)
where  the  coefficient  γt  represents  a  global 
rescaling  factor  to  reduce  the  stochastic  forcing 
perturbations to a representative size. As shown in 
Fig.2, the ESMF software allows for concurrently 
running  all  ensemble  members  (including  the 
control)  and  periodically  modifying  each  model 
state  Xi by  using  information  from  all  other 
members.

  Fig.2  A  flow  chart  showing  GEFS  forecast  component 
under  ESMF  environment.  All  of  the  ensemble  members 
(including the control), each shown as a vertical column, are 
running concurrently. The blocs G_I, G_R, and G_F represent 
procedures to start, run and finish the GFS model integrations. 
The  model  state  modification  is  performed  by  the  Cpl_Run 
procedure,  while  Cpl_Initiate  and  Cpl_Finalize  serve  as 
supporting subroutines of the Cpl module.

 The model perturbations, or stochastic forcing 
terms generated with this scheme are for all of the 
model  variables  and  they  are  at  approximate 
balance.  The  perturbations  have  structures  of 
random  noise  and  their  variances  (and  kinetic 
energy) have flow-dependent geographic patterns.

       
3. IMPACT OF THE SPS SCHEME

The SPS scheme is tested for two periods, Aug. 
16 to Sep. 30, 2006 (AS) and Dec. 30, 2006 to 
Jan.  29  2007  (DJ),  representing  northern 
hemisphere  warm  and  win  cold  season, 
respectively.  GEFS operational configuration with 
N=14 members, T126 horizontal resolution and 28 
vertical  levels,  is  used and Ensemble Transform 
(ET) is employed to generate the initial conditions 
(Wei et al., 2008). The integration was conducted 
with  the  stochastic  parameterization  scheme 
(SPS) and without it, with identical perturbations in 
the initial conditions and the results are compared 
to show the impact of the scheme. 

3.1 Ensemble Mean and Spread

    In fig.3, the mean error (ME or bias, solid lines 
near the bottom of the panel)  and  the  root  mean 

 

     Fig.3 ME(solid curve in the lower hallf of each panel) and 
RMSE (solid  above 0)  of  ensemble  mean  forecast,  and the 
ensemble spread (dashed), for Northern Hemisphere 500hPa 
height  (upper  panel)  and  Southern  Hemisphere  850hPa 
temperature (lower panel) averaged over AS, as functions of 
forecast  lead  time.  The  red  and  black  lines  are  for  the 
ensemble with and without SP, respectively.



square error (RMSE, the other solid curve) of the 
ensemble  forecast,  as  well  as  the  ensemble 
spread  (dashed)  are  plotted  for  the  ensemble 
mean forecast with (red) and without (black) SP, 
for 500hPa height and 850hPa temperature.  With 
the  SP  scheme,  the  spread  is  significantly 
increased. Although an increase in spread itself is 
not  an  indicator  of  forecast  improvement,  the 
associated  reduction  in  the  number  of  outliers 
does provide a mechanism for better interpretation 
of  the  forecast  at  the  current  level  of  forecast 
errors.  Although  RMSE  is  not  reduced 
consistently, the reduction in ME is seen in both 
height and temperature, over all  3 domains (NH, 
SH and Tropics) and 2 seasons (AS and DJ). As 
shown in  HTZ,  Mean Absolute  Systematic  Error 
(MASE) is also reduced when SPS is used. Also 
note  that  ME  and  MASE  are  measures  of 
systematic  errors.  For  lead  time  longer  than  2 
days, systematic error is significantly reduced. It is 
interesting to point out that SPS tends to reduce 
negative  ME of  height  and temperature,  but  not 
positive  ME.  This  has  significant  implications  in 
tuning the scheme and will be discussed in section 
4. 

3.2 Ensemble Based Probabilistic Forecast

     Similar  to  the  results  shown  in  HTZ, 
probabilistic  forecast  verification  scores  are 
calculated for the ensembles with and without the 
stochastic perturbation scheme. Fig. 4 shows the 
results  for  the  reliability  (solid)  and  resolution 
(dashed)  component  of  the  Brier  Skill  Score 
(BSS).  The  former  is  reduced  (leading  to  an 
increase  in  BSS)  for  the forecasts  of  2  days or 
longer  lead  time,  while  the  latter  remain 
unchanged. 

Fig. 4  Reliability (solid) and resolution (dashed) components 
of Brier Skill Score) as functions of lead time, averaged over 
AS period. The red and black curves are for ensembles with 
and without SPS, repectively.

  As  In  HTZ,  Ranked  Probability  Skill  Score 
(RPSS) is calculated and the results show that the 
improvement  induced  by  the  SPS  scheme  is 
initially  small  and  increases  with  time  (not 
shown).To further demonstrate the impact of the 
scheme on the ensemble distribution, Continuous 
Ranked  Probability  Score  (CRPS)  is  also 
computed. CRPS is the integral of the Brier Score 
of  all  possible  threshold  values for  a continuous 
predictand  averaged  over  the  test  data.  It  is 
reduced  to  Mean  Absolute  Error  (MAE)  for  a 
deterministic-style  (single)  forecast.  The 
corresponding skill  score  (CRPSS)  is calculated 
for each grid point with a reference forecast based 
on  the climatological distribution.  As  shown  in 
Fig.5,  the  stochastic  perturbation  scheme led  to 
significant  improvement  in  the  ensemble 
distribution  and  ensemble  based  probabilistic 
forecast.

Fig.  5  CRPSS,  as  a  function  of  lead  time,  for  850hPa 
temperature, averaged over Sothern hemisphere and AS. The 
red and black curves are for ensembles with and without SP.

4.    A SIMPLE RESCALING  METHOD
   
    Preliminary  experiments  suggests  that  the 
impact of SPS on the mean error of the ensemble 
mean  forecast  and  ensemble  spread  is 
proportional to the rescaling coefficient γt  in Eq.(3), 
or  the  size  of  the  perturbations.  However,  as 
mentioned  in  section  3.1,  SPS  only  reduces 
negative ME. Therefore,  the specification of  γt is 
very important to maximize the benefit and avoid 
negative  impacts  associated  with  SPS.  In  the 
previous  section,  this  parameter  is  empirically 
specified as a function of the forecast leading time 
only and taking the following form
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      As the added stochastic perturbations tend to 
reduce  only  negative  ME,  which  has  different 
values in the two hemispheres and have seasonal 
variations, Eq.(4) is not the optimal choice and fine 
tuning  of  the  coefficient  is  necessary.  A  simple 
tuning  method  is  tested  and  presented  in  this 
section.
     Fig.  5  shows  daily  variation  of  ME  over 
northern and southern hemispheres from Aug. 16 
2006 to Aug.15, 2007, for the GEFS operational 
forecast  of  500hPa  height  at  day  9.  Seasonal 
variations are clear in both hemispheres and they 
are roughly out of phase. The maximum is around 
Jan. 1 over the southern hemisphere and July 1 
over  the Northern Hemisphere,  consistent  to the 
results for the previous years. To incorporate this 
seasonal cycle into the tuning of  γt, it is assumed 
that

                   01γγγ =t                                     (5)

 and 
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where  θ is  latitude,  d  the  Julian  day,  and  A  an 
adjustable amplitude. Note that A=0.0 reduces (6) 
to (4) and A=0.2 is used in this section.

Fig.6 Daily variation of mean error in GEFS operational 9-day 
forecast of 500hPa height, averaged over the Northern (black) 
and Southern (red) Hemisphere, showing the seasonal cycle 
and the phase difference between the two hemispheres.

      Fig. 7 compares the RPSS score of 500hPa 
forecasts over the Southern Hemisphere averaged 
over DJ. Note from fig.6 that ME is characterized 
by small negative or even positive values for this 
period. When γ is specified by (4), over correction 
of ME is applied and this may hurt the ensemble 
based  probabilistic  forecast  (red  curves). 
Reducing the perturbation size over by using (6) 
(the green curve) led to higher RPSS scores. More 
complicated  formulation  of  this  coefficient, 
presumably,  varying with longitude and following 
the real value of the recent ME values, may further 
improve  the  forecast  and  require  careful 
investigations.

Fig. 7 RPSS, as a function of lead time, for 500hPa height, 
averaged over Sothern Hemisphere and DJ. The black curve is 
for the forecast without SP, while red and green for forecasts 
with SP formulated using (5) and (6), respectively. 

5. SUMMARY AND SUGGESTIONS

      A  stochastic  parameterization  scheme  is 
developed based on the tendencies of ensemble 
perturbations.  The  scheme is  tested  with  NCEP 
Global Ensemble Forecast System and it can be 
practical  under  the  ESMF  environment.  The 
results  of  recent  experiments  confirmed  the 
tentative  conclusions  from  previous  experiments 
based  on  a  simplified  version  of  the  scheme 
(HTZ). Specifically, it is demonstrated that

(1) The  stochastic  scheme  can  significantly 
improve ensemble forecast with increased 
spread  and  reduced  systematic  errors  in 
the ensemble mean;

(2) For  probabilistic  forecasts,  the  stochastic 
scheme  can  significantly  improve  RPSS, 
BSS  and  other  scores;  In  addition,  it  is 
shown  in  this  study  that  Continuous 
Ranked  Probability  Skill  scores  (CRPSS) 
can be significantly improved.

    It is also revealed that the size of the stochastic 
perturbations,  or the coefficient  γ, should vary in 
time and space. A simple method in specifying this 
parameter  is  proposed  and  tested.  The  method 
allows γ to vary with latitude and season, based on 
the seasonal variation of domain averaged model 
error  (ME)  in  500hPa  height  over  the  two 
hemispheres.  It led to more improvement in the 
forecast,  compared  with  a  globally  specified  γ. 
However, more research is required in tuning the 
scheme to maximize the benefit of the stochastic 
perturbation scheme and avoid negative impacts.
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   APENDIX:  GENERATION OF THE W MATRIX

     In  eq.(2),  because  P  is  orthogonal,  an 
orthonormal  matrix  W can ensure that  S is  also 
orthogonal.  In  a  M-dimensional  space,  the  N 
orthgogonal P-vectors are rotated to generated N 
orthogonal  S-vectors.  Therefore,  the  problem  is 
reduced to specifying the orthonormal matrix W as 
a random function of time. W is specified at t=0 as 
a random but orthonormalized matrix, by filling it 
with independent Gaussian random numbers and 
then  applying  Gram-Schmidt  orthonormalization. 
Random proper rotations are then applied in an N-
dimensional space to the W matrix at each time 
the scheme is applied, i.e.,

                W(t)  =  W(t-1)  R0(t=0)  R1(t)

where  R  denotes  a  matrix  of  dimension  NxN, 
which  is  a  random  perturbation  of  the  identity 
matrix.  The subscripts  0  and I  denote two such 
rotations, with the former specified at t=0 and the 
fixed for all t, and the latter randomly specified at 
each time t. The variation of W specified this way 
can be viewed as a random rotation (R1) imposed 
on a steady rotation R0. Similarly, its elements, or 
the random combination coefficients wi,j vary like a 
random walk   imposed on a period function.  By 
specifying the amount of the rotation in R0 and R1, 
one can control the variation of these coefficients. 
Some examples are shown in Fig. 1.
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